当前位置: 主页 > 域名估价 >

浙大袁辉球团队在重费米子体系中发现外尔费米竞彩篮球比分预测

时间:2019-04-25 16:11来源:备案域名 作者:5A域名网 点击:
2018年11月5日,《Nature Communications》在线报道了浙江大学关联物质研究中心袁辉球/刘洋/Michael Smidman团队与杭州师范大学物理系曹超教授合作的最新研究成果:在重费米子半金属YbPtBi中

2018年11月5日,《Nature Communications》在线报道了浙江大学关联物质研究中心袁辉球/刘洋/Michael Smidman团队与杭州师范大学物理系曹超教授合作的最新研究成果:在重费米子半金属YbPtBi中发现外尔费米子的实验证据。

      凝聚态物质中的拓扑序和拓扑相变是物理学中的一个重要发现,它突破了基于对称性破缺的经典朗道理论,解释了包括涡旋激发、量子霍尔效应等在内的许多新现象。近年来,人们在凝聚态材料中发现了一系列受对称性保护的拓扑量子物态,例如拓扑绝缘体、狄拉克半金属、外尔半金属等。这些拓扑材料表现出独特的电子性质,在自旋电子器件以及量子计算等方面具有独特的应用前景。寻找新型拓扑材料、揭示新的拓扑物性仍是当今前沿热点研究问题。

      外尔半金属是一类重要的拓扑半金属材料,由于其准粒子低能激发与外尔费米子具有类似的性质而得名。1929年,赫尔曼×外尔(Hermann Weyl)通过对狄拉克方程做了零质量简化,得到了所谓的外尔方程,其描述的就是质量为零且具有自旋手性的外尔费米子。寻找外尔费米子一直是高能物理领域中的一个重要课题,然而迄今尚未在实验上找到相应的粒子。近年来,人们在一些凝聚态物质的电子结构中发现成对出现的外尔节点,这些外尔点在表面上的投影由费米弧连接,即一段不闭合的费米面。外尔半金属表现出许多新奇电学特性,例如线性巨磁阻,手性异常效应和反常霍尔效应等。

      迄今为止,绝大部分实验中确认的外尔半金属均属于弱关联电子体系。在这些材料中,由于电子间关联效应较弱,第一性原理计算往往能比较准确地预言其能带拓扑结构,并且很快被角分辨光电子能谱等实验证实。那么,强关联电子体系中是否也存在外尔费米子?电子关联效应与拓扑序相结合后会产生什么新的现象?怎样来探测强关联电子体系中的拓扑性质?

      重费米子是一类典型的强关联电子体系,通常存在于含有f-电子的镧系或者锕系金属间化合物中。在重费米子体系中,随着温度的降低,局域的f-电子通过近藤效应与导带电子集体杂化而产生巡游重电子,其有效质量高达自由电子质量的上千倍,"重费米子"因此而得名。在这类材料中,局域电子与巡游电子间的近藤相互作用还会打开一个小的杂化能隙。当费米能级位于杂化能隙之内时,材料呈现出绝缘体或者半导体行为,这类材料又称近藤绝缘体或者半导体。而在更多的情况下,费米能级穿过导带,材料表现出金属行为。因此,重费米子体系可以呈现出非常丰富的量子特性。1979年,德国科学家Frank Steglich教授(现为浙大关联物质研究中心主任)首次在重费米子金属CeCu2Si2中发现超导,这也是第一个非常规超导体。到目前为止,人们已经在40多个重费米子材料中观察到超导现象。重费米子超导表现出许多与高温超导相似的性质,对研究高温超导机理具有重要借鉴意义。另一方面,由于重费米子体系的能量尺度较低,其基态连续可调,是研究量子相变的理想体系。

图1:重费米子的形成

随着温度减低,局域电子与巡游电子通过近藤效应杂化而形成复合重费米子。

,局域电子与巡游电子通过近藤相互作用而形成复合重费米子。

近年来,人们一直致力于在重费米子材料中寻找拓扑量子态。然而,由于电子间的多体相互作用以及较低的近藤温度,通常的能带计算和角分辨光电子能谱不再是探索强关联拓扑态的强有力手段。相应地,重费米子体系中的拓扑态研究要比弱关联电子体系复杂得多。最近,人们在SmB6等近藤绝缘体/半导体中发现了拓扑表面态的一些实验证据,在国际上引起了广泛兴趣。然而,重费米子体系中是否存在外尔费米子或者其他拓扑半金属行为还缺乏证据。

从字面意思来看,重费米子和外尔费米子的概念似乎是矛盾的。外尔费米子在理论上来说是没有质量的,而重费米子的有效质量却很重。一个没有质量的粒子又怎么会“重”呢?实际上,外尔费米子的“零质量”是指一种独特的能量色散关系:在外尔节点附近,外尔费米子的能量与它的波矢成正比关系,其比例系数是个常数。若外尔节点位于费米能级附近,该常数即为费米速度。在重费米子材料中,虽然电子有效质量大,费米速度小,但重费米子能带同样可以遵循线性色散关系。

(责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
栏目列表
推荐内容